
1. PROOF OF THEOREM 1

Mitchell and Priddy [2] showed that the 2-basis of e ( (2)) embedded
in e ( × ) is ( ) = ( 1 + 2) ( 1 2 + 1 2) for 0, where

1 and 2 are the generators of e 1( × ). We observe the image of
e ( (2)) embedded in e ( × ).

Since is a subalgebra of , e ( ) is an -module for any space or
spectrum . Recall that ( ) = ( ) + ( ) for = 0 1 and 0( ) =

1 = 2, 1( ) = (
3+ 2 1)( ) = 4 for dim = 1. With these rules,

we are going to compute the -module structure of e ( (2)). First we need
some observation.

Lemma 1.1 For = 0 1, ( ) = ( ( ))( ) + ( )( (

)).
Proof. ( ) = ( ) = ( ( ) + ( )) = ( )

+ ( ) = ( ( ))( ) + ( )( ( )). ¥

With this lemma, if A and B are the combination of some monomials,
(AB) = (A)B+A (B). Thus we simplify (AB) to the action of

on each factor of AB. Since (( 1 + 2)
2 ) = (( 1 + 2) )( 1 + 2) +

( 1 + 2) (( 1 + 2) ) = 0 by the lemma above, and (( 1 + 2)
2 +1) =

( 1 + 2)
2 (( 1 + 2)) it su ces to consider the case = 0. Therefor we

consider (( 1 + 2)) next.

Lemma 1.2 0(( 1 + 2)) = ( 1 + 2)
2, 1(( 1 + 2)) = ( 1 + 2)

4.
Proof. 0(( 1 + 2)) = (

2
1 +

2
2) = ( 1 + 2)

2.
1(( 1 + 2)) = (

4
1 +

4
2) = ( 1 + 2)

4. ¥

Let ( ) = ( 1 + 2) ( 1 2 + 1 2) = 1 2( 1 + 2) + 2 1( 1 + 2) =

2
(1) (2)( (1)+ (2)) . By the above two lemmas, we can compute the

-module structure of e ( (2)) directly by catching the parity of and ,
i.e. the power of each factor. For example,

1( (2 2 +1))

=
2

1(
2
(1)

2 +1
(2) ( (1) + (2))

2 +1)

=
2

2
(1)

2
(2)( (1) + (2))

2
1( (2)( (1) + (2)))
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=
2

2
(1)

2
(2)( (1) + (2))

2 ( 4
(2)( (1) + (2)) + (2)( (1) + (2))

4)

=
2

2
(1)

2 +1
(2) ( (1) + (2))

2 +1( 3
(2) + ( (1) + (2))

3)

=
2

2
(1)

2 +1
(2) ( (1) + (2))

2 +1( 3
(1) + (1) 2( (1) + (2)))

=
2

( 2 +3
(1)

2 +1
(2) ( (1) + (2))

2 +1 + 2 +1
(1)

2 +2
2 ( (1) + (2))

2 +2)

= (2 +3 2 +1) + (2 +1 2 +2).
With these in mind, we can show the following theorem.

Theorem 1. e ( (2)) is a free -module.
Proof. We show that the class = { (2 2 +1)|2 2 + 1 0} is

an -basis. Since 0( (2 2 +1)) = (2 +1 2 +1), 1( (2 2 +1)) = (2 +3 2 +1) +

(2 +1 2 +2), 0 1( (2 2 +1)) = (2 +2 2 +2), we see that each ( ) is gener-
ated uniquely. Hence e ( (2)) is isomorphic to for = . Thus

e ( (2)) is a free -module with basis . ¥

Recall that e ( ) = ( 0 1) = 2 where ( 0 1) is the
ideal generated by 0 and 1. Let and be left -modules with the
actions and , then is also a left -module with the action
defined by the composition

( ) ( )

where is the diagonal map of and ( ) = is the twist map.
Denote with this action by ( ). Denote with the
extended action over by ( ).

Let be the following composite map

: 2
2

2 2 2

where : 2 is the multiplicative map and is the ring structure
map of 2.

Corollary 1. (2) ' W
2 where = 2 + 4 + 2 for 2

2 + 1 0.
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Proof. The proof is based on the concept of Yan’s [6] for splitting
(2). Let e2 +4 +2( (2)) whose image in e ( × ) is (2 2 +1),

and let : (2) dim( ) 2 represent . Construct the map by the
following composition:

: (2)
1

(
W

dim( ) 2) dim( ) 2

Note e ( (2)) = e ( ) e ( (2)) = ( 2) e ( (2)). Since
( e ( (2)) ( 2)) = (( 2) e ( (2))) and ( e ( (2))
2) = e ( (2)), the isomorphism

: ( e ( (2))) =
(( 2) e ( (2)))

is given by ( ) = ’ 1 ” , with the inverse 1( 1 ) =
’ ( ”) , where ( ) = ’ ” and is the conjugation map(cf. [5],[6]).

Hence ( 2) e ( (2)) = e ( (2)).

Since e ( (2)) is the free -module by the theorem 1, e ( (2)) is
a free -module. e ( (2)) = ( 2) e ( (2)) = e ( (2)),
thus e ( (2)) is a free -module. Consider

e (W dim( ) 2) e ( (2)) ( 2) e ( (2))
dim( )1 1 1 1

1 e ( (2))
1

where dim( )1 is in the basis of e (W dim( ) 2). Thus e (W dim( ) 2)

and e ( (2)) have the same rank. induces an isomorphism in mod
2 cohomology and thus is an equivalence. ¥
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